

Badania 'ab initio' wybranych własności strukturalnych i elektronowych azotków metali z grupy III

> Dr inż. Paweł Scharoch Instytut Fizyki Politechniki Wrocławskiej

Plan

- 1. Azotki metali z grupy III podstawowe własności
- 2. Stopy azotków możliwość regulowania parametrów sieci i struktury elektronowej
- 3. Znane problemy \rightarrow tematyka badań
- 4. Modelowanie *ab initio*
- 5. Przykłady wyników obliczeń ab initio
- 6. Prace własne wyniki i projekty

Azotki metali z grupy III

Main-Group Elements Main-Group Elements																			
						Atomic number B Symbol										18 VIIIA			
	1	1 H 1.00794	2 IIA		1.00794 Atomic weight								13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4.002602	
	2	3 Li 6.941	4 Be 9.012182		Transition Metals							5 B 10.811	6 C 12.0107	7 N 14.0067	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797		
	3	11 Na 22.989770	12 Mg 24.3050	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.065	17 Cl 35.453	18 Ar 39.948
Period	4	19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.798
	5	37 Rb 85,4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.293
	6	55 Cs 132.90545	56 Ba 137.327	57 La* 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204,3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
	7	87 Fr (223)	88 Ra (226)	89 Ac** (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Uun (281)	111 Uuu (272)	112 Uub (285)		114 Uuq (289)		116 Uuh (292)		
	Inner-Transition Metals																		
	Metal				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	Metalloid			*Lantha	anides	Ce 140.116	Pr 140.90765	Nd 144.24	Pm (145)	Sm 150.36	Eu 151.964	Gd 157.25	Tb 158.92534	Dy 162.500	Ho 164.93032	Er 167.259	Tm 168.93421	Yb 173.04	Lu 174.967
				**Act	inides	90 Th 232.0381	91 Pa 231.03588	92 U 238.02891	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)
Nonmetal																			

AlN

GaN

InN

Konfiguracje elektronowe

Al(13): -> [Ne].3s2.3p1 Ga(31): -> [Ar].3d10.4s2.4p1 In(49): -> [Kr].4d10.5s2.5p1

N(7): -> [He].2s2.2p3

Promienie i masy atomowe (empiryczne)

H:	0.25 Å,	1.01 amu
N(7):	0.65 Å,	14.01 amu
ln(49):	1.55 Å,	114 .82 amu
Ga(31):	1.30 Å,	69.72 amu
Al(13):	1.25 Å,	26.98 amu

Struktura geometryczna

Wurtzite

Zincblende

Rocksalt

Struktura elektronowa

TABLE I. The calculated (LDA+C) band gaps in comparison to experimental values and other theoretical results for the binary compounds.

$v \rightarrow c$	LDA+C	Experiment	Other calculations	
InN				
$\Gamma_6 - \Gamma_1$	0.69	0.65, ^a 0.63, ^b 0.69 ^{c,d}	0.75, ^e 0.69, ^f 0.72, ^g 1.04, ^h 0.65 ⁱ	InN: λ=1910nm
$\Gamma_5 - \Gamma_6$	9.14	8.8, ^j 8.9 ^k	10.16, ¹ 8.66 ⁱ	
M_4-M_1	5.11	5.35, ^m 5.38 ^m	5.64, ^e 5.96, ^g 6.56, ^h 5.46 ⁱ	
L_1-L_1	5.82	6.05 ^m	6.09, ^e 6.00, ^h 5.87 ⁱ	
M ₃ -M ₃	8.16	7.87, ^m 7.63 ^m	7.94, ^e 7.34, ^g 7.84, ^h 7.78 ⁱ	GaN: λ=355nm
M ₄ -M ₃	7.52	7.3 ^j	6.71 ¹	
GaN				
$\Gamma_6 - \Gamma_1$	3.56	3.44, ⁿ 3.50 ⁿ	3.47, ¹ 3.5,° 3.24 ^f	$\Lambda IN \cdot \lambda = 200 nm$
K ₃ -K ₂	9.67	9.0 ⁿ	8.54, ¹ 9.8°	
M_4-M_1	7.44	7.0 ⁿ	6.07, ¹ 7.6°	
M ₄ -M ₁	7.48	7.05 ^j	7.68, ¹ 8.5°	
AIN				
$\Gamma_6 - \Gamma_1$	6.00	6.1 ^p	6.47, ^f 6.11, ¹ 5.8, ^o 6.76 ^h	
$\Gamma_5 - \Gamma_3$	8.47	8.02 ^q	8.95, ¹ 9.4°	L.Gorczyca, et al. Phys Rev B 80, 075202 (2009)
$\Gamma_5 - \Gamma_6$	12.37	14.00 ^q	12.99, ¹ 14.0°	
H ₃ -H ₃	9.32	10.39 ^q	10.10, ¹ 10.5°	

Stopy: regulowanie Eg i stałych sieci

InN->GaN->AlN - rosnąca przerwa energetyczna AlN->GaN->InN - rosnące stałe sieci

Sterowanie przerwą energetyczną

Sterowanie przerwą energetyczną i stałą sieci x(InN)+y(GaN)+(1-x-y)AlN -> In_xGa_y Al_(1-x-y)N

Zastosowania: heterostruktury

(Warstwy epitaksjalne, kropki, druty, kreski kwantowe)

Dodatkowe efekty:

Naprężenia (izotropowe, jedno- i dwu-osiowe) Zjawiska piezoelektryczne

Problemy

- przerwa energetyczna (Eg) zmienia się nieliniowo ze składem, nawet w sytuacji jednorodnej mieszaniny ("Eg bowing")
- Eg silnie zależy od konfiguracji jonów (przy zadanym składzie
- Eg zależy od naprężeń
- Eg zależy od wbudowanego pola elektrycznego (efekt piezoelektryczny)
- skład, struktura i konfiguracja jonów -> naprężenia
- naprężenia, skład -> struktura, konfiguracja jonów, wbudowane pole elektryczne
- wpływ temperatury (?)

Przykład: "bowing" przerwy energetycznej

FIG. 1. (Color online) Energy gaps of $Ga_xAl_{1-x}N$, $In_xGa_{1-x}N$, and $In_xAl_{1-x}N$ as functions of lattice parameter, *a*, for a uniform (a) and clustered (b) distribution of cations. The triangle formed by dashed lines corresponds to a linear approximation of the relation between band gaps and lattice parameters. The shaded area covers the region where the experimental points are lying.

I.Gorczyca, T.Suski, N.E.Christensen, A.Svane, App.Phys.Lett, 101907 (2010)

Czego oczekujemy od metod *ab initio* ? "Predictive power"

Wpływ konfiguracji jonów na:

- parametry sieciowe
- strukturę elektronową (Eg)
- własności elastyczne
- potencjały deformacyjne (wpływ naprężeń izotropowych oraz dwu- i jedno-osiowych na strukturę pasmową)

Jak konfiguracja jonów zależy od:

- składu
- temperatury
- naprężeń

W perspektywie: własności dielektryczne i efekty piezoelektryczne

Obliczenia *ab initio*

- Teoria funkcjonału gęstości (DFT)
- Przybliżenia LDA/GGA dla funkcjonału korelacjiwymiany
- Pseudopotencjały ('norm conserving', 'optimized', PAW)
- Programy: ATOMPAW, OPIUM, FHIPP, ABINIT

Przykłady obliczeń *ab initio*: Eg

FIG. 2. (Color online) Energy gap of $In_xAl_{1-x}N$ as a function of composition *x*. Calculations (open circles) are shown for both the uniform (thin circles), most clustered (thick circles), and some intermediate In distribution models (squares). Solid lines are spline fits to the calculated values (uniform and most clustered cases). Measured optical energy gaps of $In_xAl_{1-x}N$ are also marked from a: Ref. 9, b: Ref. 49, and c: Ref. 50.

I.Gorczyca, S.P.Lepkowski, T.Suski, N.E. Christensen, A.Svane. Phys Rev B 80, 075202 (2009)

Obliczenia Eg cd...

FIG. 6. Partial nitrogen band density of states for $In_{0.25}Al_{0.75}N$ for the same case as in Fig. 5; however, it is further decomposed into In nearest neighbors N2 (solid line) and other nitrogen N1 (dotted line) contributions.

FIG. 7. Same as Figs. 5 and 6, but enlarged around the valenceband top.

Hybrydyzacja In(p,d) z N2(p)

Prace własne (projekty)

- Reprezentacje/funkcjonały-testy: pseudopotencjały, PAW
- In_xAl_(1-x)N: segregacja Indu wpływ naprężeń i temperatury (dynamika/termodynamika)
- In_xAl_(1-x)N: obliczenia superkomórkowe; wpływ konfiguracji jonów na własności strukturalne i elektronowe; wpływ naprężeń izotropowych oraz dwuosiowych na strukturę elektronową.
- In_xGa_(1-x)N: Coherent Potential Approximation (CPA); własności strukturalne i elektronowe w funkcji składu; potencjały deformacyjne.

Współpraca: dr Jerzy Peisert, mgr Maciej Winiarski, Paweł Szczepkowski (praca mgr), Krzysztof Kołodziejski (praca mgr), Jakub Nowak (praca mgr), Albert Ratajczak (student III rok)

%

InGaN - CPA (Coherent Potential Approximation)

energy (eV)

Obliczenia: mgr Maciej Winiarski

"Problem przerwy energetycznej" w obliczeniach *ab initio*

- Funkcjonały XC LDA/GGA zaniżona wartość Eg
- Funkcjonały XC HF zawyżona wartość Eg
- EXX, GW dobra przerwa, ale bardzo kosztowne obliczenia
- Modyfikowane funcjonały (LDA+C, MBJLDA) parametry

empiryczne, trudno dostępne

"Problem przerwy energetycznej" - metoda $\Delta(EIG)$

"Bowing" przerwy energetycznej, InGaN (CPA)

...cd: dEg/dp, potencjały deformacyjne

P.Scharoch, M.Winiarski, The effect of the electron localizatiom in the DFT/LDA based calculations of band-gap - to be published

InAlN - obliczenia superkomórkowe

- Superkomórka 32-atomowa (struktura WZ)
- 16 atomów N
- 16 atomów metalu
- Np. In_xAl_(1-x)N, x=0.25: 4 atomy In, 12 atomów Al -> 1560 konfiguracji !

In_xAl_(1-x)N - przykłady konfiguracji (spośród 1560)

In_xAl_(1-x)N; x=0.25

octaedr

plane2

random

wire

maxdistance

In_xAl_(1-x)N - obliczenia superkomórkowe

	a1	a2	С	Etot	Eg (Hartree)	Eg (eV)	Par rozpr.
plane1	1.1879E+01	1.1879E+01	1.9479E+01 Bohr	-5.1135816E+02	0.05564	1.51	5.93973
octaedr	1.1932E+01	1.1932E+01	1.9297E+01 Bohr	-5.1137464E+02	0.07666	2.08	6.02119
plane2	1.1877E+01	1.1973E+01	1.9241E+01 Bohr	-5.1138075E+02	0.07850	2.14	6.04696
random	1.1968E+01	1.1968E+01	1.9184E+01 Bohr	-5.1139640E+02	0.08930	2.43	6.58933
maxmax	1.1931E+01	1.1983E+01	1.9129E+01 Bohr	-5.1141368E+02	0.10297	2.80	7.23196
wire	1.1931E+01	1.1931E+01	1.9129E+01 Bohr	-5.1141369E+02	0.10296	2.80	7.23203
maxdistance	1.1893E+01	1.1893E+01	1.9295E+01 Bohr	-5.1143437E+02	0.11336	3.08	8.39174

- Preferowany stan maksymalnego rozproszenia Indu !
- Silna zależność Eg od stanu rozproszenia

In_xAl_(1-x)N - wpływ naprężeń na konfigurację In

P. Szczepkowski - praca magisterska

OptCell 6

In_xAl_(1-x)N - wpływ naprężeń na przerwę energetyczną

izotropowe

P. Szczepkowski - praca magisterska

jednoosiowe

In_xAl_(1-x)N - przyczyna segregacji In (?)

- <u>Hipoteza</u> entropia wibracyjna odpowiedzialna za segregację
- Konieczna analiza termodynamiki układu
- Przestrzeń konfiguracyjna (już bardzo ograniczona przez komórkę 32-atomową): 1560 stanów + stany wibracyjne !
- Obliczenia -> ponad 2 lata CPU !
- <u>III</u> Obliczenia z zasad pierwszych niewykonalne III

In_xAl_(1-x)N - przyczyna segregacji In - podejście uproszczone

- <u>Parametr rozproszenia</u> dla N atomów In w superkomórce: odległość do (N-1) atomów In, uśredniona po wszystkich atomach In w superkomórce.
- Może pełnić rolę parametru porządku przy analizie termodynamiki
- Analiza termodynamiki ograniczona tylko do stanów maksymalnego rozproszenia i maksymalnego skupienia

In_xAl_(1-x)N, x=0.25 - stany największego skupienia i największego rozproszenia In

"dispersed"

<image>

"clustered"

Program (p. Albert Ratajczak)

In_xAl_(1-x)N - przyczyna segregacji In - strategia obliczeń *ab initio*

- Obliczenia energii swobodnej w funkcji temperatury tylko dla stanów maksymalnego rozproszenia i maksymalnego skupienia
- Stany wibracyjne tylko w punkcie Γ BZ
- Punkt przecięcia energii swobodnych granica obszarów różnych preferencji
- Możliwość łatwego włączenia naprężeń
- Różne stopy, różne składy

p. Jakub Nowak - praca magisterska

The END

Dziękuję za uwagę

