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Angewandte

. . DOI: 10.1002/ange. 201100399
Enforced Ring-Opening fang

Force-Transformed Free-Energy Surfaces and Trajectory-Shooting
Simulations Reveal the Mechano-Stereochemistry of Cyclopropane
Ring-Opening Reactions™*

Przemyslaw Dopieralski, * Jordi Ribas-Arino,* and Dominik Marx

Angew.Chem.Int.Ed., 123 (2011) 7243 — 7246

Mechanochemistry of 1,1-dichloro-2,3-dimethylcyclopropane
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FIG. 1: Scheme showing the involved chemical species, i.e. all reactants (ds; trans— and trans-II being
enantiomers ), transition states (T5-1 to TS-IV; 5-T5-1 to S-T5-1IV), and products {Z,R; Z.5; E,5; ER).
The arrows connecting the reactants with the distinet products via the corresponding TSs represent the
reaction paths obtained from IRC mapping and ab initic trajectory shooting starting from the TSz (see
text), The second set of TSs (5-T5) belongs to interconversion reactions between selected products as
indicated. For simplicity all structures correspond to the stationary points at zero foree, the Z,R product is

reproduced twice for clarity, and the Cl atoms are colored viclet.
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FIG. 3: Force—dependence of activation energies AEYFu) (open symbols) and free energies AAHFy) at
300 K (filled symbols) of the disrotatory ring—opening of cis (red circles for the “outward” pathway; red
triangles for*inward” pathway) and trans (blue squares) 1,1-dichloro-2,3-dimethylocyclopropanes. The
force—dependence of AE(Fy) for the interconversion between Z,R and Z.5 products is also depicted | black
diamonds). The stretching force i=s applied to the C atoms of the two terminal methyl groups (see Figure 1)
as indicated in the upper inset. Large inset: Force—transformed free energy landscape for ring—opening of
cis reactant at a constant external force of Fy = |Fy| = 1.25 nN. These FT-FESs have heen obtained in a
reaction subspace spanned by two collective variables: CV1 is the C. .. C distance associated with the bond
that wields upon the ring-opening process. CV2 is the difference CNy — CNa of the coordination mumbers

of both chlorine atoms with respect to the left (CNy) or right {CNa) carbon atom in the cyclopropane ring.
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FIG. 4: Force-dependence of the probability of obtaining the E S-products (red) versus Z 5-products
i black) upon ring-opening of trans reactant as computed from dynamical trajectory shooting simulations.
The range of forces with wvellow and white backgrounds correspond to the forces at which the majority

product of the ring—opening process is the E,S-alkene or the Z,5-alkene, respectively.



Short, low-barrier H-bonds (LBHBS)
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Figure 5. Potential energy curves versus ro-g in vacuum and inwater solution for some [rozen ro..o
values of nitromalonamide. (Reprinted from Rell 159 with permission from Elsevier.)



Problem — the symmetry of short, low-barrier H-
bonds in solution

A--H--B  [A-H--B == A--H-B]
1 2

a b c
—
—————
Fig. 3. Effects of local solvation environment on single-well potential: (a) without solvation, (b and ¢) as solvent reorganizes.

In solution — equilibrium between solvatomers.

C.L. Perrin, Pure Appl.Chem., 81 (2009) 571 — 583
C.L. Perrin, Acc.Chem.Res., 43 (2010) 1550 — 1557



Hydrogen maleate anion
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H.-K. Woo, X.-B. Wang, L.-S. Wang, K.-C. Lau, J.Phys.Chem. A, 109 (2005)
10633

Estimated intramolecular hydrogen bond strength - 21.5 2.0 kcal/mol



J.Chem.Theor.Compt., 7 (2011) 3505-3513

l ‘ I ‘ Journal of Chemical Theory and Computation ARTICLE

pubs.acs.org/JCTC

On the Intramolecular Hydrogen Bond in Solution: Car—Parrinello and
Path Integral Molecular Dynamics Perspective

Przemyslaw Dopieralski,*" Charles L. Perrin,*" and Zdzislaw Latajka’

"Faculty of Chemistry, University of Wroclaw, Joliot—Curie 14, 50-383 Wrodaw, Poland

*Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0358, United States

o Supporting Information

CPMD, PIMD, 298K
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Hydrogen maleate ion in water (103 molecules)
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Figure 1: Car—Parrinello free-energy profile for Hmaleate anion in water. Red solid line indicates minimum free
energy pathway.

AF / keal mol

Figure 2: Path Integral free-energy profile for Hmaleate anion in water Red solid line indicates minimum free
energy pathway.
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Figure 3. Free-energy profiles for H motion in aqueous Hmaleate ion from CPMD (al) and from PIMD (a2) separately for the simulation time when
O1 was less solvated than 02, for the time when O2 was less solvated than O1, and for the time when both oxygen atoms were solvated similarly.
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Figure 5. CPMD free-energy profiles for Hmaleate anion with Na™ (al)and K (a2) separately for the simulation time when O1 was less solvated than
02, for the time when 2 was less solvated than O1, and for the time when both oxygen atoms were solvated similarly.




Chemical Physics Letters 514 (2011) 44-48
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journal homepage: www.elsevier.com/locate/cplett

Reinvestigation of spectroscopic properties for ammonia-hydrogen halide
complexes from Car-Parrinello Molecular Dynamics

Pawet Panek **, Malgorzata Biczysko®, Zdzistaw Latajka®

* Faculty of Chemistry, University of Wrocfaw, F. Jolior-Curie 14, 50-383 Wrocfow, Poland
" Dipartimento di Chimica Paolo Corradini” and INSTM M3-Village Universitd di Napoli Federico Il Complesso Univ. Mante 5. Angelo, via Cintin 80126 Napoli, Italy

P. Goldfinger, G. Verhaegen, J.Chem.Phys., 50 (1960) 1467 (high temperature
mass spectroscopy)

B. Ault, G. Pimentel, J.Phys.Chem., 77 (1973) 705 (matrix isolation IR spectra)



CPMD 100K  35ps simulation BLYP

MP2, BLYP, B3LYP VSCF, VPT2



Predictions: A. Barnes, Z. Latajka, M. Biczysko, J.Mol.Struct., 614 (2002) 11
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Figure 2. Cl-H-.-NH; vibrational spectra obtained from Car-Parrinello Molecular Dynamics (upper) as well as from VPT2 and VSCF vibrational frequencies calculations
(lower). Predicted gas phase stick spectrum, for sake of comparison, has been composed of predicted vibrational frequencies for gas phase (see Ref. [29]) and calculated
harmonic IR intensities at BLYP/6-311+G (d p) level.

H-CI str. MP2: VSCF, VPT2 ~2400 cm?; BLYP: VSCF ~1600 cm
BLYP, B3LYP: VPT2 ~1600 cm



Predictions: A. Barnes, Z. Latajka, M. Biczysko, J.Mol.Struct., 614 (2002) 11
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Figure 3. Br-H-.--NHy vibrational spectra obtained from Car-Parrinello Molecular Dynamics (upper) as well as from VPT2 and VSCF vibrational frequencies calculations

(lower). Predicted gas phase stick spectrum, for sake of comparison, has been composed of predicted vibrational frequencies for gas phase (see Ref. |29]) and calculated
harmonic IR intensities at BLYP/6-31+G (dp) level.

H-Br str. MP2: VSCF ~1600 cm-1, VPT2 ~1750 cm®; B3LYP: VPT2 950 cm!
BLYP: VSCF ~1100 cm1 VPT2 ~850 cmt
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Suggested the gas phase values of proton stretching frequencies:

Cl—H...N 1750 cm?1 and Br—-H..N 1550 cm?



Topological analysis of ELF

The gradient field of ELF — basins

Types of basins:

e core basins - C
e valence basins -V

synaptic order nomeclature symbol
1 monosynaptic V(X))
2 disynaptic V(X,Y))
23 polysynaptic V(X,Y;,...)

Average population: N(Q,) = |, p(r) d(r)

Fluctuation (variance) in the mean number of electrons in a basin
2(N = 2 2
02(N,Q) = <N%>, - <N>?,
measure of delocalization



ELF - population rules

V(C) 2 Z -N,
V(X) ~ 2.0 lone pair
V(XY) < 20 single bond
V(X,H) 15 2.5 X-H bond

Increase with Z



Charge-shift bond -> Protocovalent
bond

V(C, C)
V(C)

o

H.C-CH H.C-- 3A -- CH,

* Populations of monosynaptic basins on the intermolecular axis are very
small.

« Large exchange electrons between two basins.



Nitrous acid HONO

\ HONO-ciIs

\ HONO-trans



Nitrous acid HONO — ELF picture of bonds

HOMNO-cis HOMO-trans
& V,(N)
eV I:I"-.I:I
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. {Dl}"nl'ziﬂ”l | VIN.02) ."'x VN.O2)
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V,(02)uV;(Ce)

CASSCF(12,10)/6-311++G(2d,2p)

HONO-cis, ELF
S.Berski, K.Mierzwicki, A.Bil, Z.Latajka, Chem.Phys.Lett., 460 (2008) 559 ELI-D



V,(01LV,(O1)

V(01)
V(N)
V(N,02)

V(01)
V(N)
V(N,02)

0.39 e
0.53 e
2.03 e

0.47 e
0.61 e
1.95e

\
V(N)

trans

Cis

C(02)

V(N,02)

Y/
e

v,(02)uv;(C2)

V(N,O)
V(N,O)
V(N,O)

1.67 e
1.53 e
1.82 e

NO,
NO,*
NO,



VL(01)LV.(01)
V(N,02)

V,(02)uV,(02)

HONO(*A’) -> OH(?1r) + NO(1r) AH°,=48.0 kcal/mol
HONO(*A’) -> OH(2Z) + NO(?m) AH°,= 140.6 kcal/mol
HONO(*A’) -> H(?S) + NO,(?A,) AH°,=77.5 kcal/mol

HONO(*A’) -> H(?S) + NO,(°B,) AH°,=105.3 kcal/mol
HONO(*A’) -> H(?S) + NO,(*B,) AH°,=117.9 kcal/mol
HONO(*A’) -> H(?S) + NO,(*A,) AH°,=120.0 kcal/mol



. =

H-O-N=0 protocovalent bond
The protocovalent bond in XONO?

X — ONO
(M = Li, Na, K, CH., C,H,, F, Cl, Br, |, HO)



S. Berski, Z. Latajka, A.J. Gordon

Electron Localization Function and Electron Localizability Indicator applied to
study the bonding in the peroxynitrous acid HOONO.

J.Comput.Chem., 32 (2011) 1528 — 1540

S. Berski, Z. Latajka, A.J. Gordon

Oxygen bound iodine (O-1): The Electron Localization Function (ELF) study on
bonding in cis- and trans-IONO.

Chem.Phys.Lett., 506 (2011) 15-21

S. Berski, A.J. Gordon

Comparative density functional theory and post-Hartree-Fock (CCSD,
CASSCF) studiem on the electronic structure of halogen nitrites CIONO and
BrONO using quantum chemical topology.

J.Chem.Phys., 135 (2011) 094303-1 — 094303-13



Jodiine nitrite -ONO

cis-IONO (C,) trans-IONO (C.) cis-IONO (C,,)

0.0 4.17 kcal/mol 8.79 kcal/mol

S.Berski, Z.Latajka, A.J.Gordon, Chem.Phys.Lett., 506 (2011) 15



I-ONO

cis-IONO CCSDITZVPP JI CCSD(T)ITZVPP
Vi (N)

V2(02)

..-"
*va.on f;l 02
V()
PR, TS, -
0 .
V(1)

Vi)
L

Cis trans bond
V(1,01) | 0.67 | 0.63 | charge shift
V(N,02) | 2.05 2.16 covalent
V(N) 0.63 | 0.52 | protocova-
lent

v(01) | 047 | 0.27

V(N,02)

trans-|lONO covalent N-02 bond , (7)

V(N)
protocovalent
N-O1bond

v(o1)

Figure 3. The 2D representation of ELF for the cis-IONO at CCSD/aug-cc-pVTZ||
CCSD(T)/aug-cc-pVTZ level.

Bond polarity index of t-IONO:
N=02 0.08 pop. 2.16e (54% O2, 46% N)
-O1 0.47 pop. 0.63e (73% O1, 27% |)



trans-IONO(*A') — 10(*) + NO(*7)

AH; = 1.26(151) 1.43eV <
trans-1ONO('A") — 1(*P) + NO3(*A;)

AH; = 0.51(0.76) 0 69 eV <
trans-IONO('A") — 1{*P) + NO1(*Ba )
AHp = 1.85(2.12) 1.99eV
trans-IONO('A") — 1{*P) + NO2(*By )
AHp = 2.14(2.36) 2.44 eV
trans-IONO('p') — 1(2P) + NO2(2A")
AHZ = 2.60(2.88) 273 eV
trans-IONO{'A") — ION{" A"y + O(*P)
AH; = 3.80(4.06) 3.73 eV
trans-10NO{TA") — IT(*P) + NO3 ("A4)
AH; = 8.89 (9.44) 921 eV
trans-IONO{*A") — 17 ('S) + NO3('Z,)
AH; = 7.08(7.39) 6.99 eV

V4(02)



Peroxynitrous acid HOONO
HO-ONO or HOO-NO protocovalent bond?

cc-HOOND cp-HOONO tp-HOONO
0.0 kcal/mol 0.95 kcal/mol g.a7pa 2 82 keal/mol

? | . o
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Figure 1. The optimized structures of the cis-cis {(cc), cis-perp {cp) and trans-perp
HOOMNO at the CCSIMT Yaug-co-pWTE lavel,

(ip) isomers of

Rule of the valence octet: H— O - 01 -N =02

S.Berski, Z.Latajka, A.J.Gordon, J.Comput.Chem., 32 (2011) 1528



. S e
cp-HOONO tp-HOONO
cc-HOONO cp-HOONO tp-HOONO
V(N,02) 2.00 2.15 2.15
V(N) 0.60 0.54 0.53
V(01) 0.48 0.29 0.29
V(0,01) 0.67 - 0.64
V’(01) - 0.26 -
\V/(O) - 0.35 -




HOONO

Table 5. The splitting the V(A,B) localization basins into atomic
contributions A, B N V(A, B)|A] in e calculated for cc, cp, and tp
1somers of HOONO at CCSDfaug-co-pVTZ/CCSD(T ) faug-co-pVTZ level.

NV(A,B)|A]

cc cp Ip
VN, 02)IN 1.00 1.00 1.01
VN, 02)lO2 1.00 1.14 1.13
VINJING V(NOI 0.57; 0.03 0.53; 0.02 0.51; 0.02
VOO, V(O1)IN 0.46; 0.01 0.28; 0.01 0.29; 0.00
V(0,010 0.25 — 0.28
V(0,001 0.42 — 0.36
VOLIOL; ViiOLIO — 0.33; 0.01 —
VIOO:; V()OI — 0.25; 0.01 —
V(O.H)IO 1.34 1.36 1.35
V(O H)IH 0.34 (.36 0.36
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Bonding evolution theory (BET)
the evolution of the V(0O,01) and V(N,01) basin populations

Nie] a)
“2 | cc-ONOOH - ONO-OH V(N,01)
1.4 ir._ = 1.4284A M__@
1.3 Ty ™ 1.3844A Mﬂ#
1.2 V(0,01) "

1.1 \‘\ /AJ/M 54 2E [keal/mol | b)

i M‘{N,L‘JV
19 4
0.9 / 14
0.8 g
4 -
0.7 m;;\
] \‘\:"I:ﬂ,ﬂﬂ ) =4 T T
0.6 V(o1) /] 1.1 1.35 1.6 MO-O1)i4)

0.5 A BB .
I 1 %
0.4 v(o1) a—a—" ' L
0.3 fold wﬂxﬁ r:usp\_*_“‘“n_
f e e

- V(N) :. hﬂ(ﬂ] )
e viQ) '/.\.\ fold H0-01)[A]

1.1 1.1% 1.2 1.23 1.3 1,33 1.4 1,45 1.5 1,35 L. 1.63 L7 1,75

Figure 5. (a) Evoluion of the O=01 and N=01 bimds durmg the eblmgation of the O=01 bond
from 1.2 to 1.7A in co-HOOMNO, studied ot the BILYPfaug-copVTE level. The lines linking the points
are added to emphasize the trend, (h) MEP calculated for the evolution presented in Figure 5a.




bl

HOONO — HNO + O,('%;)
HOONO — HNO + O5('A,)
HOONO — OH + NO,
HOONO — HO, + NO

HOONO — HONO,

HOONO

AHy" = 1.23 (1.18) eV
AHy = 220 (2.15) eV
AHy" = 0.86 (0.79) eV «——— 0.67e CS bond
AH," = 1.18 (1.15) eV

AH® = —1.26 (—1.25) :\\

1.08 e PC bond



Conclusion

Total basin population of the CS/protocovalent
bond could be a good indicator of the
weakest bond because the covalent bond,
which is ,,partially bonded”, is weaker, and
with less electron density in the bonding
basin, therefore, will break first.
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