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The Nobel Prize in Chemistry 2013

* Martin Karplus, Michael Levitt, Arieh Warshel

quantum physics

"For the development of multiscale
models for complex chemical
systems"

classical
physics

http://www.nobelprize.org/nobel_prizes/chemistry/
laureates/2013/press.html diele t



Hierarchy of multiscale simulations
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General procedure

GROMACS
input files:
Molecule .top and .gro \
lGaussianO9 T MD B oport)
AMBER trajectories calculations

Geometry and input files:
ESP charges  Amber -Prmtop and /

\l' Tools .prmcrd
Hessian and Refinement of

potential —> force field
energy surface parameters



How to parameterize!

* Derive molecular mechanical force field
parameters using quantum mechanical
(mainly density functional theory)
calculations
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Step |:

e Run necessary quantum chemical
calculations.



Quantum mechanics in chemistry

* Schrodinger equation

EU = HU

* Born-Oppenheimer approximation

* Nucleus represented by point charge
* Electrons represented by wave function



Density functional theory

* Exchange-correlation approximation

> A large number of functionals to choose
from...

° Local, GGA, meta-GGA, Hybrid, Double-
hybrid, etc.

* Hybrid functionals are most widely used

- B3LYP, PBEO, CAM-B3LYP, etc.
1993 1996 2004



Basis set

e A set of functions used to fit the
electronic wave function

* Quality: double-zeta (DZ), triple-zeta
(TZ), QL,5Z, etc.

e Polarization and diffusion functions:
necessary for realistic simulations

» B3LYP/6-311+G(d,p)



Step 2:

e Generate initial force field parameters, for
example, using GAFF.



Force field

e Non-bonded interaction

o Electrostatic interaction G

° Van der Waals interaction

* Bonded interaction >
> Bond stretching

> Angle bending | ,
° Dihedral angle ; o



Non-bonded interaction
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Bonded interaction

» Bond stretching g
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Procedure

e Optimize the geometry and calculate the
Hessian and ESP charges.

o g09 < molecule.inp > molecule.out

o formchk molecule.chk

%mem=1000MB

%chk=molecule. chk

#p B3LYP/6-311+G(d,p) NoSymm Opt Freq
SCRF(PCM,Solvent=Water) Pop=CHelpG

molecule

o R

.0408210174 1.2072071597 1.3657881129

0O 0.0235063728 1.0862639647 -2.74056842




Procedure

* Generate AMBER input files using

AmberTools.

o antechamber -i molecule.log -fi gout -o
molecule.mol2 -fo mol2 -c esp

o parmchk -i molecule.mol2 -o
molecule.frcmod -f mol2

o tleap -s -f leap.in

source leaprc.gaff

mods = loadAmberParams molecule.frcmod

MOL = loadMol2 molecule.mol2

saveAmberParm MOL molecule.prmtop molecule.prmcrd

quit




Procedure

e Convert AMBER input files to

GROMACS format

o perl amber_to _gmx by XL.pl -top
molecule.prmtop -crd molecule.prmcrd
-name molecule

e Output files:

o gmx_molecule.top
o gmx_molecule.gro



Step 3:

* Get bond stretching and angle bending
force constants from Hessian.



Why Hessian!

* Harmonic potential
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From Hessian to force constant

* For two atoms (A and B) connected by

a chemical bond, the reaction force on

atom A due to displacement of atom B
is expressed as
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Bond stretching force constant

e The force constant matrix [k,z] has three
eigenvalues 4 and three eigenvectors

v (1=1,2,3)
o 112 is unit vector from A to B

|

A B
» The bond stretching force constant is
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Angle bending force constant

° 1, Iis a unit vector perpendicular to the
ABC plane

e The reaction forces on atoms A and C are
perpendicular to AB and CB, respectively
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Angle bending force constant
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Coding tips

e The full Hessian matrix is saved in a lower
triangle format in the fchk file, e.g.

° Hogs Hyoo Hy s Hags Hay Hop, Hig, -

* The Hessian matrix is 3Nx3N and
symmetric

» Use proper math libraries (e.g. GSL) to
diagonalize the 3x3 matrix

e Be careful with unit conversion



Scripts

* Hess2FF.pl and getbonded.pl

> Perl scripts to calculate bond/angle force
constant from Hessian

> Reference: |. M.Seminario, Int. |. Quantum
Chem.,, 60, 1271-1277 (1996)

» Usage:

o perl getbonded.pl -top gmx molecule.top
-fchk molecule.fchk -name molecule



Step 4:

» Refine the dihedral angle force constant
by fitting to QM potential energy surface.



Dihedral angle force constant

* Methodology: fitting molecular mechanical
potential energy surface to quantum

mechanical data
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Relaxed potential energy scan

» Keyword in Gaussian 09:
> Opt(Modredundant)

%mem=1000MB

%chk=scan.chk

#p B3LYP/6-311+G(d,p) Opt(Modredundant)
SCRF(PCM,Solvent=Water)

scan

o R

.0408210174 1.2072071597 1.3657881129

0O 0.0235063728 1.0862639647 -2.74056842

151213 S 9 10.0




Fitting MM energies to QM

» Extract the SCF energies and gather the
geometries into a GROMACS gro file.

e Run MD simulation using the "-rerun”
option to obtain the MM potential energy
surface.

e Adjust the dihedral force constants so
that the MM calculations could reproduce

the QM results.



Step 5:

e Run MD simulation with new set of
parameters.



Run MD simulations

e Solvation

o genbox -ci gmx _molecule.grol -nmol 1
-box 2.2 2.2 2.2

o genbox -cp out.gro -cs

o Edit the gmx _molecule.top file to
include proper number of solvent
molecules.



Run MD simulations

* Energy minimization

o grompp -f em.mdp -c gmx_molecule.gro
-p gmx_molecule.top

> mdrun -s topol.tpr

o cp confout.gro after_em.gro



Run MD simulations

e MD simulation

o grompp -f md.mdp -c after_em.gro -p
gmx_molecule.top

> mdrun -s topol.tpr

° Trajectory saved in traj.xtc

> Energies saved in ener.edr



Further discussion:

why do we need parameterization!?
* Non-standard residue

> Green fluorescent protein




Non-standard residue

* Derive charges for a non-standard residue
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Non-standard residue

* respgen (AmberTools)

o =a additional input data (predefined charges,
atom groups, etc.)

//predefined charges
CHARGE -0.417500 7 N1
CHARGE ©.271900 8 H4
//charge groups

GROUP 4 0.00000
//atoms in the group
ATOM 7 N1

ATOM 8 H4

ATOM 9 C3

ATOM 10 H5




Non-standard residue

* Derive atomic partial charges for large
molecule through fragmentation
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