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The Nobel Prize in Chemistry 2013 

 Martin Karplus, Michael Levitt, Arieh Warshel 

 

"For the development of multiscale 

models for complex chemical 

systems" 
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http://www.nobelprize.org/nobel_prizes/chemistry/

laureates/2013/press.html 



Hierarchy of multiscale simulations 
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General procedure 
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How to parameterize? 

 Derive molecular mechanical force field 

parameters using quantum mechanical 

(mainly density functional theory) 

calculations 
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Step 1: 

 Run necessary quantum chemical 
calculations. 

 Generate initial force field parameters, for 
example, using GAFF. 

 Get bond stretching and angle bending 
force constants from Hessian. 

 Refine the dihedral angle force constant 
by fitting to QM potential energy surface. 

 Run MD simulation with new set of 
parameters. 
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Quantum mechanics in chemistry 

 Schrödinger equation 

 

 

 Born-Oppenheimer approximation 

 

 Nucleus represented by point charge 

 Electrons represented by wave function 
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Density functional theory 

 Exchange-correlation approximation 

◦ A large number of functionals to choose 

from... 

◦ Local, GGA, meta-GGA, Hybrid, Double-

hybrid, etc. 

 

 Hybrid functionals are most widely used 

◦ B3LYP,  PBE0, CAM-B3LYP,  etc. 
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1993 1996 2004 



Basis set 

 A set of functions used to fit the 

electronic wave function 

 Quality: double-zeta (DZ), triple-zeta 

(TZ), QZ, 5Z, etc. 

 Polarization and diffusion functions: 

necessary for realistic simulations 

 

 B3LYP/6-311+G(d,p) 
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Step 2: 

 Run necessary quantum chemical 
calculations. 

 Generate initial force field parameters, for 
example, using GAFF. 

 Get bond stretching and angle bending 
force constants from Hessian. 

 Refine the dihedral angle force constant 
by fitting to QM potential energy surface. 

 Run MD simulation with new set of 
parameters. 
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Force field 

 Non-bonded interaction 

◦ Electrostatic interaction 

◦ Van der Waals interaction 

 

 Bonded interaction 

◦ Bond stretching 

◦ Angle bending 

◦ Dihedral angle 
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Non-bonded interaction 

 Electrostatic interaction 

◦ Coulomb potential 

 

 

 Van der Waals interaction 

◦ Lennard-Jones potential 
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Bonded interaction 

 Bond stretching 

 

 

 Angle bending 

 

 

 Dihedral angle 
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Procedure 

 Optimize the geometry and calculate the 

Hessian and ESP charges. 
◦ g09 < molecule.inp > molecule.out 

◦ formchk molecule.chk 

 
%mem=1000MB 
%chk=molecule.chk 
#p B3LYP/6-311+G(d,p) NoSymm Opt Freq  
SCRF(PCM,Solvent=Water) Pop=CHelpG 
 
molecule 
 
0 1 
C 0.0408210174 1.2072071597 1.3657881129 
...... 
O 0.0235063728 1.0862639647 -2.74056842 
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Procedure 

 Generate AMBER input files using 

AmberTools. 
◦ antechamber -i molecule.log -fi gout -o 
molecule.mol2 -fo mol2 -c esp 

◦ parmchk -i molecule.mol2 -o 
molecule.frcmod -f mol2 

◦ tleap -s -f leap.in 

 

 

source leaprc.gaff  
mods = loadAmberParams molecule.frcmod  
MOL = loadMol2 molecule.mol2  
saveAmberParm MOL molecule.prmtop molecule.prmcrd  
quit 
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Procedure 

 Convert AMBER input files to 

GROMACS format 
◦ perl amber_to_gmx_by_XL.pl -top 
molecule.prmtop -crd molecule.prmcrd 
-name molecule 

 

 Output files:  
◦ gmx_molecule.top 

◦ gmx_molecule.gro 
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Step 3: 

 Run necessary quantum chemical 
calculations. 

 Generate initial force field parameters, for 
example, using GAFF. 

 Get bond stretching and angle bending 
force constants from Hessian. 

 Refine the dihedral angle force constant 
by fitting to QM potential energy surface. 

 Run MD simulation with new set of 
parameters. 
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Why Hessian? 

 Harmonic potential 

 

 

 First derivative 

 

 Second derivative 
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dEb,ij / drij = kb,ij (rij – rij,0) 

d2Eb,ij / drij
2 = kb,ij 



From Hessian to force constant 

 For two atoms (A and B) connected by 

a chemical bond, the reaction force on 

atom A due to displacement of atom B 

is expressed as 
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A       B 



Bond stretching force constant 

 The force constant matrix [kAB] has three 

eigenvalues       and three eigenvectors 

 

        is unit vector from A to B 

 The bond stretching force constant is 
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A       B 



Angle bending force constant 

       is a unit vector perpendicular to the 

ABC plane 

 The reaction forces on atoms A and C are 

perpendicular to AB and CB, respectively 
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Angle bending force constant 
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Coding tips 

 The full Hessian matrix is saved in a lower 

triangle format in the fchk file, e.g.  

◦ H00, H10, H11, H20, H21, H22, H30, ... 

 The Hessian matrix is 3Nx3N and 

symmetric 

 Use proper math libraries (e.g. GSL) to 

diagonalize the 3x3 matrix 

 Be careful with unit conversion 
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Scripts 

 Hess2FF.pl and getbonded.pl 

◦ Perl scripts to calculate bond/angle force 

constant from Hessian 

◦ Reference:  J. M. Seminario, Int. J. Quantum 

Chem., 60, 1271-1277 (1996)  

 

 Usage: 
◦ perl getbonded.pl -top gmx_molecule.top 
-fchk molecule.fchk -name molecule 
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Step 4: 

 Run necessary quantum chemical 
calculations. 

 Generate initial force field parameters, for 
example, using GAFF. 

 Get bond stretching and angle bending 
force constants from Hessian. 

 Refine the dihedral angle force constant 
by fitting to QM potential energy surface. 

 Run MD simulation with new set of 
parameters. 
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Dihedral angle force constant 

 Methodology: fitting molecular mechanical 

potential energy surface to quantum 

mechanical data 
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Relaxed potential energy scan 

 Keyword in Gaussian 09: 

◦ Opt(Modredundant) 

%mem=1000MB 
%chk=scan.chk 
#p B3LYP/6-311+G(d,p) Opt(Modredundant) 
SCRF(PCM,Solvent=Water) 
 
scan 
 
0 1 
C 0.0408210174 1.2072071597 1.3657881129 
...... 
O 0.0235063728 1.0862639647 -2.74056842 
 
1 5 12 13  S  9  10.0 
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Fitting MM energies to QM 

 Extract the SCF energies and gather the 
geometries into a GROMACS gro file. 

 

 Run MD simulation using the "-rerun" 
option to obtain the MM potential energy 
surface. 

 

 Adjust the dihedral force constants so 
that the MM calculations could reproduce 
the QM results. 
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Step 5: 

 Run necessary quantum chemical 
calculations. 

 Generate initial force field parameters, for 
example, using GAFF. 

 Get bond stretching and angle bending 
force constants from Hessian. 

 Refine the dihedral angle force constant 
by fitting to QM potential energy surface. 

 Run MD simulation with new set of 
parameters. 

29 



Run MD simulations 

 Solvation 

◦ genbox -ci gmx_molecule.gro -nmol 1 
-box 2.2 2.2 2.2 

 

◦ genbox -cp out.gro –cs 

 

◦ Edit the gmx_molecule.top file to 
include proper number of solvent 
molecules. 
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Run MD simulations 

 Energy minimization 

◦ grompp -f em.mdp -c gmx_molecule.gro 
-p gmx_molecule.top 

 

◦ mdrun -s topol.tpr 

 

◦ cp confout.gro after_em.gro 
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Run MD simulations 

 MD simulation 

◦ grompp -f md.mdp -c after_em.gro -p 
gmx_molecule.top 

 

◦ mdrun -s topol.tpr 

 

◦ Trajectory saved in traj.xtc 

◦ Energies saved in ener.edr 
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Further discussion:  

why do we need parameterization? 
 Non-standard residue 

◦ Green fluorescent protein 
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Non-standard residue 

 Derive charges for a non-standard residue 
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Non-standard residue 

 respgen (AmberTools) 

◦ -a  additional input data (predefined charges, 

atom groups, etc.) 

 

 

35 

//predefined charges 
CHARGE -0.417500 7 N1 
CHARGE 0.271900 8 H4 
//charge groups 
GROUP 4 0.00000 
//atoms in the group 
ATOM 7 N1 
ATOM 8 H4 
ATOM 9 C3 
ATOM 10 H5 



Non-standard residue 

 Derive atomic partial charges for large 

molecule through fragmentation 
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Be aware: define proper fragments 


