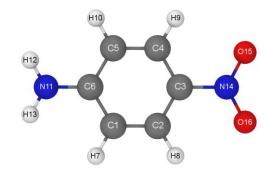
Analyses of molecular dynamics trajectories

Xin Li
TheoChem&Bio, KTH, Sweden
lixin@theochem.kth.se



Wrocław, 2014-06-25

I. The motion of the molecule

Translation (diffusion)

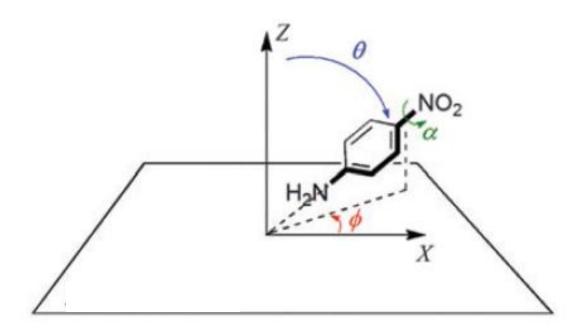
The Einstein relation

$$6D_{\text{ion}} = \lim_{t \to \infty} \frac{d}{dt} \langle |\vec{R}(t) - \vec{R}(0)|^2 \rangle$$

- D_{ion} is the self-diffusion coefficient
- The factor of 6 arises for 3D system
- D_{ion} is obtained from linear fitting of the mean square deviation (MSD) time plot

Rotation (isotropic tumbling)

 Spatial rotation of the molecule described by the vector along or perpendicular to the molecule



Auto-correlation function

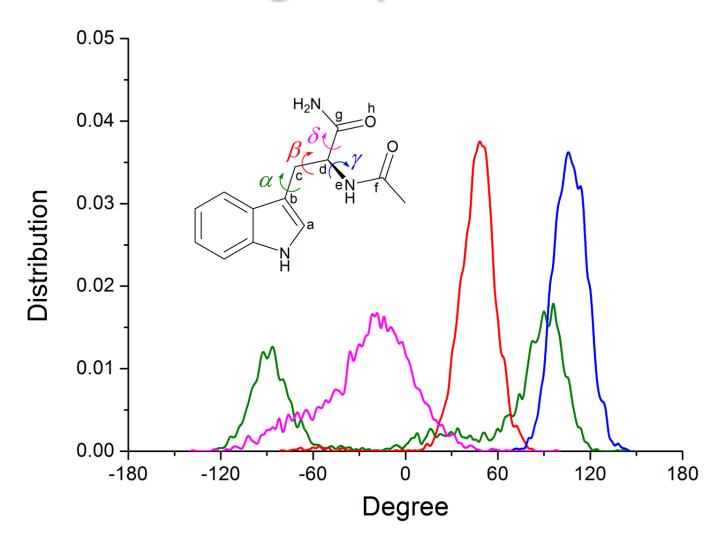
For a vector p

$$C_{\mathbf{p}}(t) = \int_0^\infty P_n(\cos \angle (\mathbf{p}(\xi), \mathbf{p}(\xi + t)) d\xi$$

• P_n is *n*-th order Legendre polynomial. Usually n = 2.

 The rotational correlation time is obtained through integration of the auto-correlation function from zero to infinity

Dihedral angle dynamics



Auto-correlation function

• For a dihedral angle φ

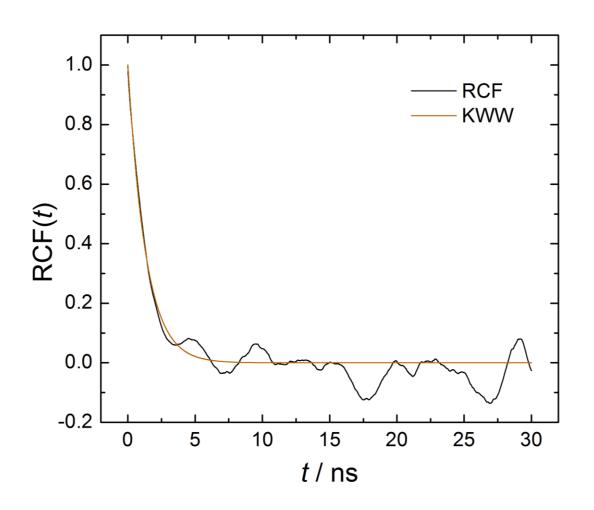
$$C(t) = \left\langle \cos[\varphi(t_0) - \varphi(t_0 + t)] \right\rangle_{t_0}$$

 Can be fitted to the Kohlrausch-Williams-Watts relaxation function

$$KWW(t) = \exp(-\alpha t^{\beta})$$

 The rotational correlation time is obtained through integration of the KWW function from zero to infinity

Rotational correlation function



Nonlinear fitting:

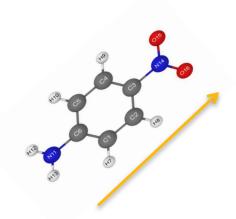
Use Matlab
Or GaussNewton
method

2. The orientation of the molecule

Orientation (long axis)

• The molecular inertia tensor (3x3)

$$I_{\alpha\beta} = \sum_{i} m_{i} \left(r_{i}^{2} \delta_{\alpha\beta} - r_{i\alpha} r_{i\beta} \right)$$
$$\alpha, \beta \in \{x, y, z\}$$



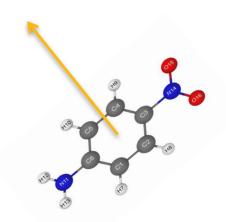
 The molecular long-axis is defined as the eigenvector associated with the smallest eigenvalue of *I*.

M. R. Wilson, J. Mol. Liquids, 68 (1996) 23-31

Orientation (normal direction)

The molecular inertia tensor (3x3)

$$I_{\alpha\beta} = \sum_{i} m_{i} \left(r_{i}^{2} \delta_{\alpha\beta} - r_{i\alpha} r_{i\beta} \right)$$
$$\alpha, \beta \in \{x, y, z\}$$



The eigenvector associated with the
 <u>largest</u> eigenvalue of inertia tensor *I* is
 perpendicular to the molecular plane.

M. R. Wilson, J. Mol. Liquids, 68 (1996) 23-31

Order-parameter (self-assembly)

• The ordering tensor (3x3)

$$Q_{\alpha\beta} = \frac{1}{N} \sum_{j=1}^{N} \left(\frac{3}{2} a_{j\alpha} a_{j\beta} - \frac{1}{2} \delta_{\alpha\beta} \right)$$

$$\alpha, \beta \in \{x, y, z\}$$

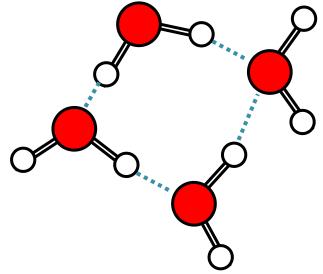
- N is number of molecules
- a_j is the molecular long-axis of the j-th molecule
- ullet The largest eigenvalue of Q is the uniaxial order parameter

Hydrogen bonds

 Formed between hydrogen atoms and electronegative atoms (N, O, F, etc.)

Donor(D)-Hydrogen(H)...Acceptor(A)

- Geometry criteria:
 - distance D-A ≤ 3.5 Å
 - angle H-D-A ≤ 30°



Lifetime of hydrogen bonds

Auto-correlation function

$$C(t) = \langle s_i(t_0) s_i(t_0 + t) \rangle$$

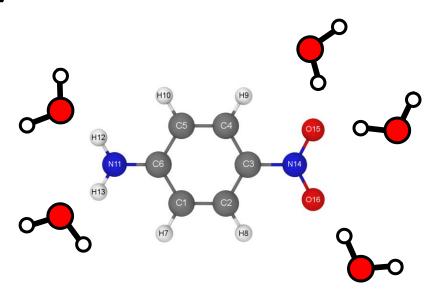
• $s_i(t_0) = 0$ or 1 for H-bond i at time t_0

The average H-bond lifetime

$$\tau_{HB} = \int_0^\infty C(t)dt$$

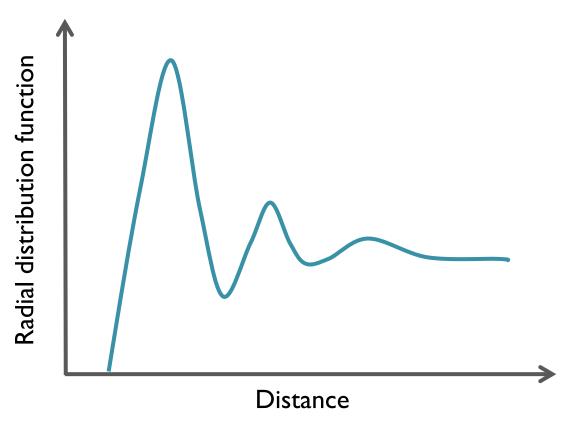
Radial distribution function

- Relative density of B around A with respect to bulk
- Non-uniform distribution of B in the vicinity of A



Radial distribution function

- First solvation shell
- Second solvation shell



4. Analyzing tools in GROMACS

GROMACS tools

- g_msd
 - Calculate mean square deviation and diffusion constant.
- g_rotacf
 - Calculate rotational correlation function for molecules.
- g_rdf
 - Calculate radial distribution function in several different ways.
- g_hbond
 - Calculate and analyze hydrogen bond number, distance, angle, lifetime, etc.

GROMACS tools

Refer to the manual

editconf
eneconv
g_anadock
g_anaeig
g_analyze
g_angle
g_bar
g_bond
g_bundle
g_chi
g_cluster
g_clustsize
g_confrms
g_covar
g_current
g_density
g_densmap
g_dielectric
g_dih
g_dipoles
g_disre
g_dist

g_dyndom
g_enemat
g_energy
g_filter
g_gyrate
g_h2order
g_hbond
g_helix
g_helixorient
g_lie
g_mdmat
g_membed
g_mindist
g_morph
g_msd
g_nmeig
g_nmens
g_nmtraj
g_order
g_polystat

g_potential
g_principal
g_protonate
g_rama
g_rdf
g_rms
g_rmsdist
g_rmsf
g_rotacf
g_rotmat
g_saltbr
g_sas
g_select
g_sgangle
g_sham
g_sigeps
g_sorient
g_spatial
g_spol
g_tcaf
g_traj

g_tune_pme g_vanhove g_velacc g_wham g_wheel g_x2top g_xrama genbox genconf genion genrestr gmxcheck gmxdump make_edi make ndx mdrun mk_angndx Pdb2gmx tpbconv trjconv trjcat trjorder

5. Computational models for absorption spectra

Computational models

- Molecule (QM) + PCM
- Molecule (QM) + Solvent (MM, point charges)
- Molecule (QM) + Solvent (MM, point charges and dipoles)
- Supermolecule: Molecule + surrounding solvent molecules (QM)

6. Analysis of computed spectra

A few words on TD-DFT

- Compute the absorption spectra (UV-Vis spectra)
- Only reliable for low-lying excited states
- Be careful with charge transfer cases
- Use polarization and diffusion functions

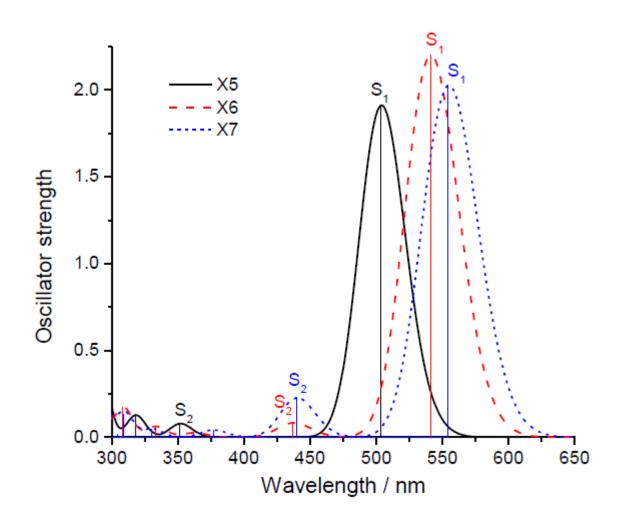
- CAM-B3LYP/6-311+G(d,p)
- CAM-B3LYP/TZVP

Output from Gaussian09

- Excitation energies ΔE
- Oscillator strengths f
- Transition dipole moment M
- $f = 2/3 \Delta E M^2$

- Molecular orbital composition
 - 2 x (Cl coefficient)^2
 - e.g. coefficient = 0.7, composition = 98%

Broadening of stick spectra



Broadening of stick spectra

Gaussian broadening

$$G(\omega) = \sum_{n=1}^{N} \frac{1}{\sqrt{\pi} \cdot \Delta} e^{-\left(\frac{\omega - \omega_n}{\Delta}\right)^2}$$

Lorentzian broadening

$$L(\omega) = \sum_{n=1}^{N} \frac{1}{\pi \cdot \Delta \cdot \left[1 + \left(\frac{\omega - \omega_n}{\Delta}\right)^2\right]}$$